Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.898
Filtrar
1.
Tissue Eng Regen Med ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578424

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs. MSCs can also participate in vascular formation by differentiating into endothelial cells and secreting paracrine factors. Vascularization ability is essential in impaired tissue repair and function recovery. Therefore, the vascularization ability of MSCs, which enhances angiogenesis and accelerates tissue healing has made MSCs a promising tool for tissue regeneration. However, MSC spheroids are a relatively new research field, and more research is needed to understand their full potential. METHODS: In this review, we highlight the importance of MSC spheroids' vascularization ability in tissue engineering and regenerative medicine while providing the current status of studies on the MSC spheroids' vascularization and suggesting potential future research directions for MSC spheroids. RESULTS: Studies both in vivo and in vitro have demonstrated MSC spheroids' capacity to develop into endothelial cells and stimulate vasculogenesis. CONCLUSION: MSC spheroids show potential to enhance vascularization ability in tissue regeneration. Yet, further research is required to comprehensively understand the relationship between MSC spheroids and vascularization mechanisms.

2.
Cell Tissue Res ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602543

RESUMO

Synovial chondromatosis (SC) is a disorder of the synovium characterized by the formation of osteochondral nodules within the synovium. This study aimed to identify the abnormally differentiated progenitor cells and possible pathogenic signaling pathways. Loose bodies and synovium were obtained from patients with SC during knee arthroplasty. Single-cell RNA sequencing was used to identify cell subsets and their gene signatures in SC synovium. Cells derived from osteoarthritis (OA) synovium were used as controls. Multi-differentiation and colony-forming assays were used to identify progenitor cells. The roles of transcription factors and signaling pathways were investigated through computational analysis and experimental verification. We identified an increased proportion of CD34+ sublining fibroblasts in SC synovium. CD34+CD31- cells and CD34-CD31- cells were sorted from SC synovium. Compared with CD34- cells, CD34+ cells had larger alkaline phosphatase (ALP)-stained area and calcified area after osteogenic induction. In addition, CD34+ cells exhibited a stronger tube formation ability than CD34- cells. Our bioinformatic analysis suggested the expression of TWIST1, a negative regulator of osteogenesis, in CD34- sublining fibroblasts and was regulated by the TGF-ß signaling pathway. The experiment showed that CD34+ cells acquired the TWIST1 expression during culture and the combination of TGF-ß1 and harmine, an inhibitor of Twist1, could further stimulate the osteogenesis of CD34+ cells. Overall, CD34+ synovial fibroblasts in SC synovium have multiple differentiation potentials, especially osteogenic differentiation potential, and might be responsible for the pathogenesis of SC.

3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612457

RESUMO

The advancement of exosome studies has positioned engineered exosomes as crucial biomaterials for the development of advanced drug delivery systems. This study focuses on developing a hybrid exosome system by fusing mesenchymal stem cells (MSCs) exosomes with folate-targeted liposomes. The aim was to improve the drug loading capacity and target modification of exosome nanocarriers for delivering the first-line chemotherapy drug paclitaxel (PTX) and its effectiveness was assessed through cellular uptake studies to evaluate its ability to deliver drugs to tumor cells in vitro. Additionally, in vivo experiments were conducted using a CT26 tumor-bearing mouse model to assess the therapeutic efficacy of hybrid exosomes loaded with PTX (ELP). Cellular uptake studies demonstrated that ELP exhibited superior drug delivery capabilities to tumor cells in vitro. Moreover, in vivo experiments revealed that ELP significantly suppressed tumor growth in the CT26 tumor-bearing mouse model. Notably, for the first time, we examined the tumor microenvironment following intratumoral administration of ELP. We observed that ELP treatment activated CD4+ and CD8+ T cells, reduced the expression of M2 type tumor-associated macrophages (TAMs), polarized TAMs towards the M1 type, and decreased regulatory T cells (Tregs). Our research highlights the considerable therapeutic efficacy of ELP and its promising potential for future application in cancer therapy. The development of hybrid exosomes presents an innovative approach to enhance drug delivery and modulate the tumor microenvironment, offering exciting prospects for effective cancer treatment strategies.


Assuntos
Exossomos , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis , Modelos Animais de Doenças , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias/tratamento farmacológico
4.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612553

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an extensively studied cell type in clinical trials due to their easy availability, substantial ex vivo proliferative capacity, and therapeutic efficacy in numerous pre-clinical animal models of disease. The prevailing understanding suggests that their therapeutic impact is mediated by the secretion of exosomes. Notably, MSC exosomes present several advantages over MSCs as therapeutic agents, due to their non-living nature and smaller size. However, despite their promising therapeutic potential, the clinical translation of MSC exosomes is hindered by an incomplete understanding of their biodistribution after administration. A primary obstacle to this lies in the lack of robust labels that are highly sensitive, capable of directly and easily tagging exosomes with minimal non-specific labeling artifacts, and sensitive traceability with minimal background noise. One potential candidate to address this issue is radioactive iodine. Protocols for iodinating exosomes and tracking radioactive iodine in live imaging are well-established, and their application in determining the biodistribution of exosomes has been reported. Nevertheless, the effects of iodination on the structural or functional activities of exosomes have never been thoroughly examined. In this study, we investigate these effects and report that these iodination methods abrogate CD73 enzymatic activity on MSC exosomes. Consequently, the biodistribution of iodinated exosomes may reflect the biodistribution of denatured exosomes rather than functionally intact ones.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Neoplasias da Glândula Tireoide , Animais , Radioisótopos do Iodo , Distribuição Tecidual
5.
Biomed Mater ; 19(3)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604155

RESUMO

The standard surgical procedure for abdominal hernia repair with conventional prosthetic mesh still results in a high recurrence rate. In the present study, we propose a fibroblast matrix implant (FMI), which is a three-dimensional (3D) poly-L-lactic acid scaffold coated with collagen (matrix) and seeded with fibroblasts, as an alternative mesh for hernia repair. The matrix was seeded with fibroblasts (cellularized) and treated with a conditioned medium (CM) of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSC). Fibroblast proliferation and function were assessed and compared between treated with CM hUC-MSC and untreated group, 24 h after seeding onto the matrix (n= 3). To study the matricesin vivo,the hernia was surgically created on male Sprague Dawley rats and repaired with four different grafts (n= 3), including a commercial mesh (mesh group), a matrix without cells (cell-free group), a matrix seeded with fibroblasts (FMI group), and a matrix seeded with fibroblasts and cultured in medium treated with 1% CM hUC-MSC (FMI-CM group).In vitroexamination showed that the fibroblasts' proliferation on the matrices (treated group) did not differ significantly compared to the untreated group. CM hUC-MSC was able to promote the collagen synthesis of the fibroblasts, resulting in a higher collagen concentration compared to the untreated group. Furthermore, thein vivostudy showed that the matrices allowed fibroblast growth and supported cell functionality for at least 1 month after implantation. The highest number of fibroblasts was observed in the FMI group at the 14 d endpoint, but at the 28 d endpoint, the FMI-CM group had the highest. Collagen deposition area and neovascularization at the implantation site were observed in all groups without any significant difference between the groups. FMI combined with CM hUC-MSC may serve as a better option for hernia repair, providing additional reinforcement which in turn should reduce hernia recurrence.


Assuntos
Proliferação de Células , Colágeno , Fibroblastos , Herniorrafia , Hérnia Incisional , Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Telas Cirúrgicas , Tecidos Suporte , Animais , Fibroblastos/metabolismo , Ratos , Masculino , Humanos , Células-Tronco Mesenquimais/citologia , Herniorrafia/métodos , Herniorrafia/instrumentação , Colágeno/química , Tecidos Suporte/química , Hérnia Incisional/cirurgia , Poliésteres/química , Teste de Materiais , Meios de Cultivo Condicionados/farmacologia , Materiais Biocompatíveis/química , Células Cultivadas , Hérnia Abdominal/cirurgia , Cordão Umbilical/citologia
6.
Front Immunol ; 15: 1389134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605972

RESUMO

Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Transplante das Ilhotas Pancreáticas/métodos , Inteligência Artificial , Diabetes Mellitus Experimental/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Insulina
7.
BMC Med Genomics ; 17(1): 87, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627703

RESUMO

OBJECTIVE: This study aims to screen the differentially expressed long non-coding RNAs (DELncRNAs) related to the regulation of epithelial-mesenchymal transition (EMT) in hypospadias in mesenchymal stem cell-derived exosomes (MSC-Exons) and explore the potential mechanism of these lncRNAs for the EMT in hypospadias. METHODS: In this study, the microarray data related to MSC-Exos and hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the lncRNAs highly expressed in MSC-Exos and the differentially expressed mRNAs and lncRNAs in children with hypospadias were screened, respectively. In addition, the lncRNAs enriched in MSC-Exos and differentially expressed lncRNAs in hypospadias were intersected to obtain the final DElncRNAs. Moreover, the co-expression interaction pairs of differentially expressed lncRNAs and mRNAs were analyzed to construct a Competing Endogenous RNA (ceRNA) network. Finally, the candidate lncRNAs in exosomes were subjected to in vitro cell function verification. RESULTS: In this study, a total of 4 lncRNAs were obtained from the microarray data analysis. Further, a ceRNA regulatory network of MSC-Exo-derived lncRNAs related to the regulation of EMT in hypospadias was constructed, including 4 lncRNAs, 2 mRNAs, and 6 miRNAs. The cell function verification results indicated that the exosomes secreted by MSCs may transport HLA complex group 18 (HCG18) into target cells, which promoted the proliferation, migration, and EMT of these cells. CONCLUSION: MSC-Exo-derived lncRNA HCG18 can enter target cells, and it may be involved in the regulation of EMT in hypospadias through the ceRNA network.


Assuntos
Hipospadia , MicroRNAs , RNA Longo não Codificante , Masculino , Criança , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Transdução de Sinais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes
8.
Mol Biotechnol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637450

RESUMO

Laryngeal squamous cell carcinoma (LSCC) has the highest mortality rate among head and neck squamous cell carcinoma. This study was designed to investigate the biological effect of long noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) on LSCC development and the underlying mechanism. The expression and prognostic value of lncRNAs in head and neck squamous cell carcinoma were predicted in the bioinformatics tools. The overexpression of MSC-AS1 in LSCC patients predicted a poor prognosis. Depletion of MSC-AS1 using shRNA repressed the malignant phenotype of AMC-HN-8 and TU-177 cells. MSC-AS1, mainly localized in the nucleus, interacted closely with the transcription factor CCCTC-binding factor (CTCF). CTCF played anti-tumor effects in vitro and in vivo. Ataxin-7 (ATXN7) was predicted to be a downstream target of CTCF, whose expression was negatively controlled by MSC-AS1. MSC-AS1 was found to block the expression of CTCF, thereby repressing ATXN7. Finally, MSC-AS1 overexpression in LSCC was governed by YTH domain-containing protein 1 (YTHDC1)-mediated m6A modification. In summary, our research identified the YTHDC1/MSC-AS1/CTCF/ATXN7 axis in LSCC development, which indicated that MSC-AS1 is an attractive biomarker in the LSCC treatment.

9.
Arch Biochem Biophys ; 755: 109987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579956

RESUMO

OBJECTIVE: The inhibition of M1 macrophages may be interesting for targeted therapy with mesenchymal stem cell-derived Exosomes (MSC-EXOs). This study aimed to investigate the stem cells of human exfoliated deciduous teeth-derived EXOs (SHED-MSC-EXOs) effect on regulating the pro- and anti-oxidant indexes and inhibiting M1 macrophage polarization. Besides, an in-silico analysis of SHED-MSC-EXO miRNAs as the highest frequency of small RNAs in the exosomes was performed to discover the possible mechanism. METHODS: The flow cytometry analysis of CD80 and CD86 as M1-specific markers confirmed the polarization of macrophages derived from THP-1 cells. After exosome isolation, characterization, and internalization, THP-1-derived M1 macrophages were treated with SHED-MSC-EXOs. M1-specific markers and pro- and anti-oxidant indexes were evaluated. For in-silico analysis of SHED-MSC-EXOs miRNAs, initial miRNA array data of SHED-EXOs is collected from GEO, and the interaction of the miRNAs in M1 macrophage polarization (M1P), mitochondrial oxidative stress (MOS) and LPS-induced oxidative stress (LOS) were analyzed by miRWalk 3.0 server. Outcomes were filtered by 75th percentile signal intensity, score cut-off ≥0.95, minimum free energy (MEF)≤ -20 kcal/mol, and seed = 1. RESULTS: It shows a decrease in the expression of CD80 and CD81, a reduction in pro-oxidant indicators, and an increase in the anti-oxidant indexes (P < 0.05). Computational analysis showed that eight microRNAs of SHED-MSC-EXO miRNAs can bind to and interfere with the expression of candidate genes in the M1P, MOS, and LOS pathways simultaneously. CONCLUSION: SHED-MSCs-EXOs can be utilized to treat conditions related to M1 macrophage-induced diseases (M1IDs) due to their unique physical properties and ability to penetrate target cells easily.

10.
Inflammopharmacology ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615278

RESUMO

Inflammatory bowel disease (IBD) poses a significant challenge in modern medicine, with conventional treatments limited by efficacy and associated side effects, necessitating innovative therapeutic approaches. Mesenchymal stem cells (MSC) have emerged as promising candidates for IBD treatment due to their immunomodulatory properties and regenerative potential. This thesis aims to explore and compare various sources of MSC and evaluate their efficacy in treating IBD. This study comprehensively analyses MSC derived from multiple sources, including bone marrow, adipose tissue, umbilical cord, and other potential reservoirs. Core elements of this investigation include assessing differences in cell acquisition, immunomodulatory effects, and differentiation capabilities among these MSC sources, as well as comparing their clinical trial outcomes in IBD patients to their therapeutic efficacy in animal models. Through meticulous evaluation and comparative analysis, this thesis aims to elucidate disparities in the efficacy of different MSC sources for IBD treatment, thereby identifying the most promising therapeutic applications. The findings of this study are intended to advance our understanding of MSC biology and offer valuable insights for selecting the most effective MSC sources for personalized IBD therapy. Ultimately, this research endeavor will optimise therapeutic strategies for managing inflammatory bowel disease through the utilization of MSC.

11.
Int J Nanomedicine ; 19: 3423-3440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617800

RESUMO

Introduction: Osteoporotic-related fractures remains a significant public health concern, thus imposing substantial burdens on our society. Excessive activation of osteoclastic activity is one of the main contributing factors for osteoporosis-related fractures. While polylactic acid (PLA) is frequently employed as a biodegradable scaffold in tissue engineering, it lacks sufficient biological activity. Microdroplets (MDs) have been explored as an ultrasound-responsive drug delivery method, and mesenchymal stem cell (MSC)-derived exosomes have shown therapeutic effects in diverse preclinical investigations. Thus, this study aimed to develop a novel bioactive hybrid PLA scaffold by integrating MDs-NFATc1-silencing siRNA to target osteoclast formation and MSCs-exosomes (MSC-Exo) to influence osteogenic differentiation (MDs-NFATc1/PLA-Exo). Methods: Human bone marrow-derived mesenchymal stromal cells (hBMSCs) were used for exosome isolation. Transmission electron microscopy (TEM) and confocal laser scanning microscopy were used for exosome and MDs morphological characterization, respectively. The MDs-NFATc1/PLA-Exo scaffold was fabricated through poly(dopamine) and fibrin gel coating. Biocompatibility was assessed using RAW 264.7 macrophages and hBMSCs. Osteoclast formations were examined via TRAP staining. Osteogenic differentiation of hBMSCs and cytokine expression modulation were also investigated. Results: MSC-Exo exhibited a cup-shaped structure and effective internalization into cells, while MDs displayed a spherical morphology with a well-defined core-shell structure. Following ultrasound stimulation, the internalization study demonstrated efficient delivery of bioactive MDs into recipient cells. Biocompatibility studies indicated no cytotoxicity of MDs-NFATc1/PLA-Exo scaffolds in RAW 264.7 macrophages and hBMSCs. Both MDs-NFATc1/PLA and MDs-NFATc1/PLA-Exo treatments significantly reduced osteoclast differentiation and formation. In addition, our results further indicated MDs-NFATc1/PLA-Exo scaffold significantly enhanced osteogenic differentiation of hBMSCs and modulated cytokine expression. Discussion: These findings suggest that the bioactive MDs-NFATc1/PLA-Exo scaffold holds promise as an innovative structure for bone tissue regeneration. By specifically targeting osteoclast formation and promoting osteogenic differentiation, this hybrid scaffold may address key challenges in osteoporosis-related fractures.


Assuntos
Exossomos , Osteoporose , Humanos , RNA Interferente Pequeno/genética , Osteogênese , Porosidade , Poliésteres , Citocinas , Osteoporose/terapia
12.
Equine Vet J ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587145

RESUMO

BACKGROUND: Safe, efficacious therapy for treating degenerate deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) in navicular horses is critically necessary. While archetypal orthobiologic therapies for navicular disease are used empirically, their safety and efficacy are unknown. Mesenchymal stem cell-derived extracellular vesicles (EV) may overcome several limitations of current orthobiologic therapies. OBJECTIVES: To (1) characterise cytokine and growth factor profiles of equine bone marrow mesenchymal stem cell (BM-MSC)-derived extracellular vesicles (BM-EV) and (2) evaluate the in vitro anti-inflammatory and extracellular matrix (ECM) protective potentials of BM-EV on DDFT and NBF explant co-cultures in an IL-1ß inflammatory environment. STUDY DESIGN: In vitro experimental study. METHODS: Cytokines (IL-1ß, IL-6, IL-10, IL-1ra and TNF-α) and growth factors (TGFß1, VEGF, IGF1 and PDGF) in equine BM-EV isolated via ultracentrifugation and precipitation methods were profiled. Forelimb DDFT and NBF explant co-cultures from seven horses were exposed to media alone, or media containing 2 × 109 ± 0.1 × 109 particles/mL or 10 µg/mL BM-EV (BM-EV), 10 ng/mL interleukin-1ß (IL-1ß), or IL-1ß + BM-EV for 48 h. Co-culture media IL-6, TNF-α, MMP-3, MMP-13 concentrations and explant sulphated glycosaminoglycan (sGAG) content were quantified. RESULTS: IL-6, IGF1 and VEGF concentrations were 102.1 (37.61-256.2) and 182.3 (163.1-226.3), 72.3 (8-175.6) and 2.4 (0.1-2.6), 108.3 (38.3-709.1) and 211.4 (189.1-318.2) pg/mL per 2 × 109 ± 0.1 × 109 particles/mL or 10 µg/mL 10 µg of BM-EV isolated via ultracentrifugation and precipitation methods, respectively. Co-culture media MMP-3 in BM-EV- (p = 0.03) and BM-EV + IL-1ß-treated (p = 0.01) groups were significantly lower than the respective media and IL-1ß groups. DDFT explant sGAG content of BM-EV (p = 0.003) and BM-EV + IL-1ß groups were significantly higher compared with IL-1ß group. MAIN LIMITATIONS: Specimen numbers are limited, in vitro model may not replicate clinical case conditions, lack of non-MSC-derived EV control group. CONCLUSIONS: Equine BM-EV contains IL-6 and growth factors, IGF1 and VEGF. The anti-inflammatory and ECM protective potentials of BM-EV were evident as increased IL-6 and decreased MMP-3 concentrations in the DDFT-NBF explant co-culture media. These results support further evaluation of BM-EV as an acellular and 'off-the-shelf' intra-bursal/intrasynovial therapy for navicular pathologies.

13.
Cell Tissue Res ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512548

RESUMO

The 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought an enormous public health burden to the global society. The duration of the epidemic, the number of infected people, and the widespread of the epidemic are extremely rare in modern society. In the initial stage of infection, people generally show fever, cough, and dyspnea, which can lead to pneumonia, acute respiratory syndrome, kidney failure, and even death in severe cases. The strong infectivity and pathogenicity of SARS-CoV-2 make it more urgent to find an effective treatment. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with the potential for self-renewal and multi-directional differentiation. They are widely used in clinical experiments because of their low immunogenicity and immunomodulatory function. Mesenchymal stem cell-derived exosomes (MSC-Exo) can play a physiological role similar to that of stem cells. Since the COVID-19 pandemic, a series of clinical trials based on MSC therapy have been carried out. The results show that MSCs are safe and can significantly improve patients' respiratory function and prognosis of COVID-19. Here, the effects of MSCs and MSC-Exo in the treatment of COVID-19 are reviewed, and the clinical challenges that may be faced in the future are clarified.

14.
Front Plant Sci ; 15: 1363182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504900

RESUMO

Alfalfa (Medicago sativa L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting the COUMARATE 3-HYDROXYLASE (MsC3H) gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon of MsC3H were designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa via Agrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles of MsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, and Msc3h-158) with different mutation events in MsC3H were characterized in detail. Homozygous mutation of MsC3H in these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, and in vitro true dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing of MsC3H successfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.

15.
Mol Cell Probes ; 75: 101958, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38518900

RESUMO

OBJECTIVE: The effects of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-exos) on serum metabolites and intestinal microbiota in rats after liver trauma were discussed. METHODS: Adult Wistar Albino rats were assigned into control, model (liver trauma), MSCs, and MSC-exos groups (n = 6). The study examined changes in the inflammatory environment in liver tissues were analyzed by histological examination and analysis of macrophage phenotypes. Alterations in serum metabolites were determined by untargeted metabonomics, and gut microbiota composition was characterized by 16S rDNA sequencing. Correlations between specific gut microbiota, metabolites, and inflammatory response were calculated using Spearman correlation analysis. RESULTS: Rats with liver trauma after MSCs and MSC-exos treatment exhibited attenuated inflammatory infiltration and necrosis in liver tissues. MSCs and MSC-exos treatment reduced the proportion of M1 macrophages, accompanied by a decrease in inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels. Furthermore, MSCs and MSC-exos treatment expanded the proportion of M2 macrophages, accompanied by an increase in arginase-1 (Arg-1) and interleukin-10 (IL-10) levels. The beneficial effects of MSC-exo treatment on rats with liver trauma were superior to those of MSC treatment. The composition and abundance of the gut microbiota and metabolites were altered in pathological rats, whereas MSC and MSC-exo intervention partially restored specific gut microbiota and metabolite alterations. At the phylum level, alterations in Bacteroidota, Proteobacteria, and Verrucomicrobiota were observed after MSC and MSC-exo intervention. At the genus level, Intestinimonas, Alistipes, Aerococcus, Faecalibaculum, and Lachnospiraceae_ND3007_group were the main differential microbiota. 6-Methylnicotinamide, N-Methylnicotinamide, Glutathione, oxidized, ISOBUTYRATE, ASCORBATE, EICOSAPENTAENOATE, GLYCEROL 3-PHOSPHATE, and Ascorbate radical were selected as important differential metabolites. There was a clear correlation between Ascorbate, Intestinimonas/Faecalibaculum and inflammatory cytokines. CONCLUSION: MSC-exos promoted the repair of tissue damage in rats with liver trauma by regulating serum metabolites and intestinal microbiota, providing new insights into how MSC-exos reduced inflammation in rats with liver trauma.

16.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534512

RESUMO

Percutaneous mechanical circulatory support (MCS) devices are designed for short-term treatment in cases of acute decompensated heart failure as a bridge to transplant or recovery. Some of the known complications of MCS treatments are related to their hemodynamics in the aorta. The current study investigates the effect of MCS on the aortic flow. The study uses combined experimental and numerical methods to delineate complex flow structures. Particle image velocimetry (PIV) is used to capture the vortical and turbulent flow characteristics in a glass model of the human aorta. Computational fluid dynamics (CFD) analyses are used to complete the 3D flow in the aorta. Three specific MCS configurations are examined: a suction pump with a counterclockwise (CCW) rotating impeller, a suction pump with a clockwise (CW) rotating impeller, and a discharge pump with a straight jet. These models were examined under varying flow rates (1-2.5 L/min). The results show that the pump configuration strongly influences the flow in the thoracic aorta. The rotating impeller of the suction pump induces a dominant swirling flow in the aorta. The swirling flow distributes the incoming jet and reduces the turbulent intensity near the aortic valve and in the aorta. In addition, at high flow rates, the local vortices formed near the pump are washed downstream toward the aortic arch. Specifically, an MCS device with a CCW rotating impeller induces a non-physiological CCW helical flow in the descending aorta (which is opposite to the natural helical flow), while CW swirl combines better with the natural helical flow.

17.
Sci Rep ; 14(1): 5959, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472335

RESUMO

In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Complexo 2 de Proteínas Adaptadoras/metabolismo , Vesículas Extracelulares/metabolismo
18.
Cancers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473331

RESUMO

Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to metastatic transition of the cancer. Breast cancers are characterized by regions of hypoxia, which can be temporally unstable owing to a mismatch between oxygen supply and consumption. Using a high-sensitivity nanopatterned stromal invasion assay, we found that ASCs could promote stromal invasion of not only breast cancer cell lines but also MCF10A1, a cell line derived from untransformed breast epithelium. RNA sequencing of MCF10A1 cells conditioned with medium from ASCs revealed upregulation of genes associated with increased cell migration, chemotaxis, and metastasis. Furthermore, we found that fluctuating or oscillating hypoxia could induce senescence in ASCs, which could result in an increased invasive potential in the treated MCF10A1 cells. These findings highlight the complex interplay within the breast cancer microenvironment, hypoxia, and the role of ASCs in transforming even non-cancerous breast epithelium toward an invasive phenotype, providing insights into early metastatic events.

19.
Tissue Cell ; 88: 102346, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460354

RESUMO

AIM: To explore the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their conditioned medium (MSC-CM) in repairing the endometritis mouse model in vivo. METHODS: Lipopolysaccharide (LPS) was used to induce acute inflammation in endometritis mouse model. Mice were treated in six groups: control group (PBS), model group (LPS), LPS+MSC-CM (6 h) group, LPS+MSC-CM (12 h) group, LPS+MSCs (6 h) group and LPS+MSCs (12 h) group. Morphological and histological changes of mouse uterus were observed, and mouse uterine inflammation index myeloperoxidase (MPO) and related immune index TNF-α, IL-6 and IL-1ß levels were detected by ELISA. RESULTS: There exist remarkable inflammatory response and an obvious increase in the value of MPO, TNF-α, IL-1ß and IL-6 in the endometritis mouse model compared with the control group. Morphological and histological appearances were relieved after treated with hUC-MSCs and MSC-CM. Besides, the value of MPO, TNF-α, IL-1ß and IL-6 showed different degrees of decline. In comparison with LPS+MSC-CM (12 h) and LPS+MSCs (12 h) group, there was significant decrease in inflammatory indicators in LPS+MSC-CM (6 h) and LPS+MSCs (6 h) group. CONCLUSIONS: Intrauterine infusion of hUC-MSCs and MSC-CM can alleviate LPS induced endometritis.

20.
Cells ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534328

RESUMO

During the progression of knee osteoarthritis (OA), the synovium and infrapatellar fat pad (IFP) can serve as source for Substance P (SP) and calcitonin gene-related peptide (CGRP), two important pain-transmitting, immune, and inflammation modulating neuropeptides. Our previous studies showed that infrapatellar fat pad-derived mesenchymal stem/stromal cells (MSC) acquire a potent immunomodulatory phenotype and actively degrade Substance P via CD10 both in vitro and in vivo. On this basis, our hypothesis is that CD10-bound IFP-MSC sEVs can be engineered to target CGRP while retaining their anti-inflammatory phenotype. Herein, human IFP-MSC cultures were transduced with an adeno-associated virus (AAV) vector carrying a GFP-labelled gene for a CGRP antagonist peptide (aCGRP). The GFP positive aCGRP IFP-MSC were isolated and their sEVs' miRNA and protein cargos were assessed using multiplex methods. Our results showed that purified aCGRP IFP-MSC cultures yielded sEVs with cargo of 147 distinct MSC-related miRNAs. Reactome analysis of miRNAs detected in these sEVs revealed strong involvement in the regulation of target genes involved in pathways that control pain, inflammation and cartilage homeostasis. Protein array of the sEVs cargo demonstrated high presence of key immunomodulatory and reparative proteins. Stimulated macrophages exposed to aCGRP IFP-MSC sEVs demonstrated a switch towards an alternate M2 status. Also, stimulated cortical neurons exposed to aCGRP IFP-MSC sEVs modulate their molecular pain signaling profile. Collectively, our data suggest that yielded sEVs can putatively target CGRP in vivo, while containing potent anti-inflammatory and analgesic cargo, suggesting the promise for novel sEVs-based therapeutic approaches to diseases such as OA.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Substância P , Inflamação , Dor , Vesículas Extracelulares/metabolismo , Anti-Inflamatórios , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...